Chemistry Review- Packet 11, Page 1

- <u>Atom</u>- smallest particle of an element with the same properties as that element
 - In size the entire atom has been thought to be approximately four-billionths of an inch, meaning that approximately 250,000,000 atoms of this size must be put into line to span 1 inch.
- <u>Element</u>- matter made of one type of atom; cannot be broken down by chemical or physical means

Compound vs. Molecule

- <u>Compound</u>- matter made of two or more different elements; chemically bonded; cannot be separated by physical means; has properties different from elements that make it up
 - 6.2- THE STUDENT WILL EXPLAIN THAT COMPOUNDS FORM
 WHEN TWO OR MORE DIFFERENT KINDS OF ATOMS BOND.
- Molecule matter made of two or more elements (same or different); smallest particle of a substance with the same properties as that substance
 - <u>Heteroatomic molecule</u>- must have more than one type of atom, such as water (H_2O) and carbon dioxide (CO_2).
 - Homoatomic molecule a molecule consisting of atoms of the same element; i.e. diatomic

Types of Molecules

- Diatomic Molecule simplest molecule; two of the same atoms bonded together
 - $H_2 \hspace{0.1in} O_2 \hspace{0.1in} F_2 \hspace{0.1in} Br_2 \hspace{0.1in} I_2 \hspace{0.1in} N_2 \hspace{0.1in} Cl_2$
 - HOFBrINCl twins
 - I Have No Bright Or Clever Friends
 - Hydrogen; the rest form a 7 on the periodic table: N, O,
 F across, then going down Cl, Br, I.
- Polyatomic Molecule
 - Molecules containing more
 than two atoms are termed polyatomic molecules,
 e.g., carbon dioxide (CO₂) and water (H₂O).
 - 6.4- THE STUDENT WILL COMPARE AND CONTRAST MOLECULES AND COMPOUNDS.

6.5- THE STUDENT WILL COMPARE THE PROPERTIES OF COMPOUNDS WITH THE PROPERTIES OF THEIR ELEMENTS.

	Compound Name and Formula	Contains these Elements		
	Table Salt Sodium chloride NaCl	Sodium, Na	Chlorine, Cl	
Properties of Each Element or Compound	white, cubic crystals, "salty" taste	soft, malleable, metal, silver color, explodes in water	poisonous, highly irritating, gas, greenish-yellow color	
Picture	MORTON			

6.5- THE STUDENT WILL COMPARE THE PROPERTIES OF COMPOUNDS WITH THE PROPERTIES OF THEIR ELEMENTS.

	Compound Name and Formula	Contains these Elements			
	Table Sugar Sucrose C ₁₂ H ₂₂ O ₁₁	Carbon, C	Hydrogen, H	Oxygen, O	
Properties of Each Element or Compound	White color, Crystals, Sweet taste	Crystal form: graphite, diamonds; Non-crystal form: coal	Gas, Colorless, Highly flammable	Gas, Colorless, Odorless, Tasteless	
Picture					

6.5- THE STUDENT WILL COMPARE THE PROPERTIES OF COMPOUNDS WITH THE PROPERTIES OF THEIR ELEMENTS.

	Compound Name and Formula	Contains these Elements			
	Baking Soda Sodium bicarbonate NaHCO ₃	Sodium, Na	Hydrogen, H	Carbon, C	Oxygen, O
Properties of Each Element or Compound	white, powder, crystals/ lumps	soft, malleable, metal, silver color, explodes in water	Gas, Colorless, Highly flammable	Crystal form: graphite, diamonds; Non-crystal form: coal	Gas, Colorless, Odorless, Tasteless
Picture	Pure Name Soda				

Physical Properties and Physical Changes <u>Physical Property</u>

- observed with the senses (color, shape, odor, state/phase of matter)
- phase changes (melting point, boiling point, freezing point)

Physical Change

- Physical changes are about energy and states of matter
 - You can cause physical changes with forces like motion, temperature, and pressure.
- MATTER:
 - Alters the form or appearance of a material
 - Does not make the material into a new substance; the matter is the same before and after the change
 - Original matter can be recovered; change can be "undone"

Physical Changes

- PARTICLES:
 - The molecules of the substance are rearranged, NOT atoms

- EXAMPLES:
 - chopping wood, bending copper wire into new shapes, painting a car, ice melting into water

Chemical Properties and Chemical Changes

- Observed during a chemical reaction; the way it reacts to another substance
- Based on the structure of the atoms or molecules

Chemical Change

- any change that results in the formation of new substances
- MATTER:
 - The matter is different; the original matter is no longer present and cannot be recovered; the change cannot be "undone"
 - The substances present at the beginning of the change are not present at the end

PARTICLES Chemical Changes

- Bonds between atoms in molecules are broken, atoms are rearranged, and new bonds are made
- Forms a new substance with molecules with a different structure
- contains the same elements, but rearranged in new combinations

EXAMPLES: Rusting of iron (oxidation), burning of gasoline in an engine (flammability)

Flammable vs. Combustible

- The distinction is determined by how easily they ignite
- Flash point the lowest temperature at which it can produce a flame when a source of ignition is present.

- Flammable material that can easily catch fire under normal circumstances and with the help of minimal ignition source. Just a spark is sufficient enough
 Flash point: below 100°F
 Example: gasoline, propane
- Combustible material that will burn; but more vigorous conditions are required for an ideal combustible material to burn; A simple spark is definitely not enough.
 - Flash point: above 100°F
 - Example: paper, wood