Earth and Space 2013-2014

To infinity and

digitalmediafx.com

Your guide for success for the Earth and Space

beyond

Table of Contents—Earth and Space

). What is Astronomy?	3
. What tools and processes do astronomers use?	
A. Telescopes	4
B. Electromagnetic Radiation	4
C. Size and Scale in the Universe	6
D. Doppler Effect	6
III. What is the structure and composition of the universe?	
A. Stars	
1. Color	8
2. Composition	8
3. Classification	8
4. Life Cycle	10
B. Galaxies	12
C. Formation of the Universe	12
IV. What is the Structure and Composition of our Solar System	
A. Formation	14
B. Our Sun	16
C. Earth Formation	18
D. Planetary Motion	20
V. What is the relationship of objects in space?	
A. Phases of the moon	22
B. Eclipses	24
C. Tídes	26
D. Seasons on Earth	28

Table of Contents—Earth and Space

VI. What is Geology			
VII. What is Geologic Time ?			
A. Geologic Time Scale	4		
B. Determining The Age	6		
C. Rock Cycle	6		
VIII. How is the Earth layered?			
A. Inside the Earth	8		
B. Tectonic Plates	10		
$\forall $. What ideas led to the Theory of Plate Tectonics?			
A. Continental Drift	12		
B. Sea Floor Spreading	14		
C. Theory of Plate Tectonics	16		

Extra Doodle Page

	Tools of Astronomy				
		Chapter: 1 Secti	tion: 2 Pages: 8–13		
		Tele	<u>escope</u>		
•	Instrument that	electron it for better	omagnetic radiation from the and		
•	There are two basic ty	pes of telescopes:	and non		
	<u>Op</u>	<u>tical</u>	Non -Optical		
•	Most		Detects not seen by the		
•	Used to study		Reveals more about the		
•	Collects visible light a	nd focuses it to a	Place in to get above Earth's and avoid		
•	The bigger the more	lens, the it can gather .	 Types of Non-Optical Telescopes • 		
L	2 Types of Op	otical Telescopes:	·		
	Refracting: Uses	Reflecting Uses	•		
	<u>2 Disadvantages</u> :	2 Advantages:	•		
1.	Images are	1. Mirrors can be			
2.	Size is	2. Gathers more			
		the state			
			Radio waves Micro- waves Infrared Ultrat X rays Gamma rays		
	Current Telescopes can measure across the Electromagnetic Spectrum				
	Electromagnetic Spectrum:				
	All of the	or	of electromagnetic		
	Humans can only dete	 ect	with the human eye.		
	Red ()	> Blue ()		
•	Earth's	blocks most	st radiation from objects in space		
•	Atmosphere serves as	a	shield around		

#1 How Big? Group according to size: Smallest to Largest

Ranking	My Ideas	Group's Answer	Actual Answer
1			
2			
3			
4			
5			
6			
7			
# Correct			

#2 How Far? Group according to distance from Earth: Closest to Farthest

Ranking	My Ideas	Group's Answer	Actual Answer
1			
2			
3			
4			
5			
6			
7			
# Correct			

#3 How Old? Group according to age: Youngest to Oldest

Ranking	My Ideas	Group's Answer	Actual Answer
1			
2			
3			
4			
5			
6			
7			
# Correct			

- 1. Which category was the easiest to place in order? ______
- 2. Why?_____

3. Which category was the hardest to place in order? ______

- 4. Why?_____
- 5. What interesting fact did you learn today?

StarsColor, Composition, and Classification Chapter: 2 Section: 1 Pages: 32-36
The of the star reveals its • = Hottest Color • Example— • = Coolest Color • Example—
Stars are made up of different in the form of
Inner Layer: Outer Layer: (Also known as the star's atmosphere) Made up ofgases. Produces ato identify andin a star's spectrum. Eachhas aspectrum.
Stars are classified by and and
Temperature differences result in differences.
Letters represent different temperature classifications: • Type(hottest, blue), B, A F, G, K, (coolest, red)
Brightness is classified by using negative (-) or positive (+) numbers. Negative numbers = Positive numbers = Astronomers use two different classifications for brightness:
 Apparent brightness:

Star Types – Color and Surface Temperature

Determine the color and letter of these stars:

Star Name	Luminosity	Surface Temperature Kelvin	Color	Letter
Our Sun	1	5,750	White-Yellow	G
Betelgeuse	16,000	3,100		
Polaris	5,500	5,400		
B. Centauri	1,700	25,000		
Antares	910	3,200		
Spica	760	24,000		
Aldebaran	160	3,600		
Regulus	160	13,600		
Arcturus	100	4,500		
Vega	50	11,300		
Sirius	20	10,600		
Fomalhaut	12	9,600		
Altair	10	8,400		
Procyon	6	6,600		
A. Centauri	2	6,000		
Lacaille 8760	0.03	3,500		
40 Eridani B.	0.01	9,000		

	Life Cycle of Stars			
	Chi	apter: 2 Section: 2	Pages: 40–45	
Cla	essification of stars based on size	• A t • _ s _ r	star's classification changes hroughout its cycle. star use their upply much faster, therefore, they more and do not have as long of ""	
•	Begins when and	Stage 1—A Sta in a	r is Born contract to form a	
•	pulls gas, c	lust together,	gets denser, hotter.	
•	The process of	begins as	is changed to	
•	Stage 2- is Process releases an Size changes very	-Main Sequenc in the core. amount of _ as long as there	e—Longest Stage is asupply of	
	<u>Sta</u> supply	age 3—Giant or has been	Supergiant	
•	Core			
•	Outer layers grow very			
	Super giants grow	bigger.		
		Stage 4—A Star	's Ending	
	Ontion A		Option C	
•	Occurs	•	Occurs •Occurs	
•	Sun-sized and smaller become Can no longer generate by fusion.	 Leftovers form a If it spins = 	 Biggest of all stars - the mass of the Forms a 	
•	Can shine for billions of years before they and be- come		Detected by studying objects.	

Hertzsprung-Russell Diagram (H-R Diagram)

An H-R diagram shows the relationship between a star's surface ______ and its absolute

. The diagram shows how stars change over time. Follow the instructions below to create your own H-R diagram on the next page. You may want to use colored pencils or crayons for this activity. Remember that a star's brightness increases as you move toward the top of the H-R diagram.

- 1. Our sun is an average star. It should be located at about the center of the diagram. Draw and label the sun on the diagram.
- 2. Draw and label a red dwarf star on the diagram. Red dwarf stars are dim and have a low temperature.
- 3. Draw and label a white dwarf star on your diagram. White dwarf stars are dim and have a high temperature.
- 4. Draw and label a blue star on the diagram. Blue stars are very hot and bright.
- 5. Draw and label a red giant on the diagram. Red giants are cool and bright.
- 6. Most stars can be plotted along the main sequence of an H-R diagram. These stars range from very bright, very hot stars to dim, cool stars. Indicate and label on your diagram where the main sequence should go. What is the main sequence?
- 7. Which of the stars that you have plotted are included in the main sequence?
- 8. Imagine that you have discovered a new star in the night sky. Your measurements show that it has a surface temperature of 10,000°C and an absolute magnitude of +10. Based on your diagram, what type of star do you think it is?

Galaxies Chapter: 2 Section: 3 Pages: 46-49				
 Large groups of stars , dust and gas are called Which are classified by their There are main types of classifications; 				
Spiral • Huge in the center. • Arms • Made up of dust, and • Example: • Example:	egular " " nto any other panions of large galaxies.			
What do scientists study to understand how the universe formed? • of galaxies. What evidence do they use? • The universe— shift What is the name of a current theory?				
 Big Theory The BBT proclaims 13.7 billions of years ago all the of the universe was extreme, temperature, and density in a very spo verse rapidly. 	under ot. Then the uni-			
 How is the age of the universe calculated? Measure the from Earth to various galaxies. Calculate the of old, nearby stars. 				

SHO-WAT-CHA-KNO

History of the Universe

Understanding Main Ideas

Write an answer for each of the following questions in the spaces provided.

- 1. In which direction are nearly all galaxies moving relative to Earth?
- **2.** What is the general relationship between a galaxy's distance from Earth and its speed?

Place the following events in the order in which they occurred. Place the order number (1 through 7) in the blank to the left of each event.

- _____ **3.** nebula shrinks to form a spinning disk
- _____ 4. gravity pulls gases to center of the disk
- _____ **5.** big bang
- _____ 6. the planets form
- _____ 7. gas and dust accumulate as a nebula
 - _____ 8. matter separates into galaxies
 - **9.** gas at the center of the disk becomes hot and dense enough for nuclear fusion to begin

Building Vocabulary

Write an answer for the following question in the space provided.

10. What is the big bang theory?

A Solar System is Born

Chapter: 3 Section: 1 Pages: 64-67

In the beginning...

- The ______ needed for a ______ Solar System are found in nebulas.
- Nebulas are vast clouds of _____ and dust.
- The ingredients include: Hydrogen, _____, and Dust (made of Carbon and Iron).
- Need help from two forces: ______ and Pressure
- With all these factors, a solar nebula is born. The density of a nebula ______. This could be due to a collision with another nebula or a the explosion of a nearby star.

Step 1

- The young solar nebula begins to ______.
- Scientists estimate that the following process took approximately _____ million years.

• The Solar Nebula _____, flattens, and becomes near the center.

• Planetesimals begin to ______ within the swirling disk.

51

As the largest planetesimals grow in size, their ______ attracts more gas and dust.

- Smaller planetesimals ______ with larger planetesimals, and planets begin to ______.
- Rocky planets formed because it was too ______ for gases to remain that close to the sun therefore the rocky material was left for the inner planets to form.
- Gaseous planets formed because they were ______ enough away from the sun that their gravities could attract the nebula gases.

- The center of the sun becomes so _____ and dense that nuclear _____ begins.
- A star ______ and the remaining gas and dust are blown out of the new solar system.

The Sun: Our Very Own Star

Chapter: 3 Section: 2 Pages: 68-73

Fast Facts:

- Energy from the sun ______ and _____the Earth's surface.
- Energy from the sun drives the ______.
- The sun makes up more than ______ of the Solar System's mass.
- Nuclear Fusion is the process that produces the _______
- Albert Einstein helped scientists determine the sun's energy source with his famous equation -
- The sun is a large ball of gas composed mainly _____ and He and held together by gravity.
- It is _____ solid.
- It takes light ______ minutes to reach Earth.

les away	5 billion years old	A million planet Earths could fit inside	Surns 700 llion tons ydrogen Jel every second
93 million mil			of P.
An average star			gen and helium
			Mostly hydroo
			The source of energy

Formation of the Earth's Atmosphere...

Earth's Early Atmosphere :

• _____ and steamy...Scientists think that the atmosphere was a mixture of gases (CO₂ and H₂O Vapor) that were released as the Earth cooled.

Earth's Changing Atmosphere:

- As the Earth cooled and its layers formed, the atmosphere changed again. This atmosphere probably formed from ______ gases.
- Volcanoes released chlorine, nitrogen, and sulfur, in addition to large amounts of ______ and water vapor. Some of this water vapor may have condensed to form the Earth's first oceans.
- Comets, which are planetesimals made of _____, may have contributed to this change of Earth's atmosphere.
- As they crashed into the Earth, comets brought in a ______ of elements, such as carbon, hydrogen, ox-ygen, and nitrogen.
- Comets also may have brought some of the ______ that helped form the oceans.

The Role of Life

Ultraviolet Radiation:

.

- Scientists think that ______ (UV) radiation helped produce the conditions necessary for life.
- UV light has a lot of energy and can ______ apart molecules.
- Earth's early atmosphere probably did not have the protection of the _____ layer.
 - Over time, broken down molecular material collected in the Earth's waters, which offered ______ from UV radiation.
- In these sheltered pools of water, chemicals may have combined to form the ______ molecules that made life possible.
- The first life-forms were very ______ and did not need oxygen to live.

The Source of Oxygen:

- Sometime before 3.4 bya, organisms that produced food by ______ appeared.
- During the process ______ was released.
- Played a major role in changing Earth's atmosphere to become the ______ of gases it is today.
- As oxygen levels increased, some of the oxygen formed a layer of ______ in the upper atmosphere.
- The ozone blocked most of the _____ radiation and made it possible for life, in the form of simple plants, to move onto land about 2.2 billion years ago.

Formation of Oceans and Continents...

- Scientists think that the oceans probably formed during Earth's ______ atmosphere, when the Earth was cool enough for rain to fall and remain on the surface.
- After millions of years of rainfall, water began to cover the Earth. By _____ billion years ago, a global ocean covered the planet.

The Growth of Continents:

- After a while, some of the rocks were light enough to pile up on the surface. These rocks were the beginning
 of the earliest ______.
- The continents gradually ______ and slowly rose above the surface of the ocean. These continents did not stay in the same place, as the slow transfer of thermal energy in the mantle pushed them around.
- About 2.5 billion years ago, continents really started to ______. By 1.5 billion years ago, the upper mantle had cooled and had become denser and heavier.
- At this time, it was easier for the cooler parts of the mantle to sink. These conditions made it easier for the continents to ______ in the same way they do today.

	A re en vie re el	Newton	<u>:</u>			
•	Answered question: Why?					
•	Law of Universal Gravitation—States that the force of gravity depends on the product of the between the					
	objects.					
•	Newton also determined that bit.		and	keep the planets in or-		
•	Inertia is an object's resistance object. (Newton's	e in speed or direct Law)	ion until an Resulting path (orbit)	force acts on the		
				Pull of gravity Earth		
1.	In your own words, write a definition fo	SHO-WAT-CH	HA-KNO terms: -revolution a	and <i>rotation</i> .		
2.	 2. Kepler discovered that planets move faster when they a. are farther from the sun. b. are closer to the sun. c. have more mass. d. rotate faster. 					
5.	On what properties does the force of g					
4.	How does gravity keep a planet moving	in an orbit around the s	ın?			
5.7	5. The Earth's period of revolution is 365.25 days. Convert this period of revolution into hours. Show your work below.					
6.	6. If a planet had two moons and one moon was twice as far from the planet as the other, which moon would complete a revolution of the planet first? Explain your answer.					
Í	<u>Th</u>	<u>ese two planetary i</u>	notions cause:			
1.		3.				
2.		4.				
		23				

c l a	Moon Phases	
Cha	apter: 4 Section: 4 Pages: 112	
Cause of Moon Phases: • The moon's	position relative to	and the
The changes	of sunlight that	the side of
thanges.		
Duration of moon phase cycle: •		
Difference between waxing and wa	aning:	
How does the moon's phase differ, •	, when seen from above?	
What is unique about the moon's •	period of rotation and period of revo	olution?
Phases of the Moon		
	24	

Name___

Arranging the Moon

Directions: Cut out the phases of the moon and arrange them in order in the table below. After your teacher checks for accuracy, glue the pictures to the paper.

New Moon	1
	 _
Moon	
2 2002-	
Phases	
 5	
<u>P</u> .	
X	
14 th Day Full Moon	

CASTING SHADOWS

Have you ever seen the sun disappear? Or watched an eerie shadow move across the moon? Imagine what it was like for primitive people when the sky suddenly fell dark in the middle of the day! When three celestial objects fall into alignment, some great shadows are the result. These shadows are called eclipses of the moon or sun, and they're pretty spectacular to watch! These eclipse-watchers have written down some information about eclipses. Do they have all their facts straight? Write T (true) or F (false) next to each statement.

- A solar eclipse occurs when Earth falls between the sun and the moon.
 - 2. All eclipses are visible.
 - 3. All eclipses are total.
 - 4. The umbra is the inner part of the shadow.
 - 5. Eclipses of the sun occur 2–4 times a year.
 - 6. A lunar eclipse occurs when the moon travels through the shadow of Earth.
 - 7. There are about 2 lunar eclipses a year.
 - 8. A lunar eclipse can take place only when the moon is full.
 - 9. A total solar eclipse lasts a few minutes.
 - 10. In a solar eclipse, no sunlight penetrates the umbra.

Label the diagrams below solar eclipse or lunar eclipse.

Label Earth, moon, umbra, and penumbra on each diagram.

- 11. A total lunar eclipse occurs when the moon passes through Earth's penumbra.
 - _____ 12. Partial lunar eclipses occur more often than total eclipses.
 - ____ 13. A solar eclipse may last over 3 hours.
 - ____ 14. A total solar eclipse is visible at all spots on Earth.
 - _____ 15. All lunar eclipses are total.
 - _____ 16. In a total solar eclipse, the moon completely covers the sun.
 - ____ 17. Lunar eclipses occur every 3 years.
 - 18. A lunar eclipse may last over 3 hours.
 - ____ 19. The penumbra is the outer part of the shadow.
 - 20. When the sun's disk is covered in an eclipse, the corona is still visible.

Tides

What causes tides?

How frequent do high and low tides occur?

•

Two times a month we have special tides called Spring Tides. How are these tides different?

the Bay of Fundy

High Tide, Alma, New Brunswick in Low Tide at the same fishing port in Bay of Fundy

Two times a month we have special tides called Neap Tides. How are these tides different?

Draw the phases of the moon around the earth below. Label neap tides with an N and spring tides with an S.

Types of Tides

Pictures are not to scale.

REASONS FOR SEASONS

What's with the seasons? How do they know when to come and go? It all has to do with the movements of Earth in relation to the sun. Here are some reasons. You fill in the blanks to tell what the reason explains.

1. Reason for _____

Because Earth is tilted 23¹/₂° from a line perpendicular to its orbit, the length of daylight varies and because of the angle at which the sun's energy strikes a given location through the year.

- 2. Reason for ______ in the Northern Hemisphere: Because the Northern Hemisphere is tilted toward the sun for a few months.
- 3. Reason for ______ in the Northern Hemisphere and ______ in the Southern Hemisphere: Because Earth's tilt is sideways to the sun, and hours of daylight and darkness are the same in both hemispheres on about September 22.
- 4. Reason for _______ in the Northern Hemisphere: Because the North Pole is tilted almost directly toward the sun on about June 21.
- 5. Reason for ______ in the Southern Hemisphere: Because the South Pole is tilted away from the sun on about June 21.
- 6. Reason for ______ in the Southern Hemisphere: Because the Southern Hemisphere is tilted toward the sun for a few months.
- 7. Reason for _______ in the Northern Hemisphere: Because the South Pole is tilted almost directly toward the sun on about December 21.
- 8. Reason for ______ in the Northern Hemisphere and ______ in the Southern Hemisphere: Because Earth's tilt is sideways to the sun and hours of daylight and darkness are the same in both hemispheres on about March 20.
- 9. Reason for ______ in the Southern Hemisphere: Because the South Pole is tilted almost directly toward the sun on about December 21.
- Reason for _____ hours of daylight at the South Pole: Because the South Pole is tilted directly toward the sun on about December 21.

On the diagram at the right, label winter solstice, summer solstice, fall equinox, and spring equinox for the Northern Hemisphere.

Word Bank:

Summer Summer Solstice Summer Solstice Summer Solstice Winter Solstice Winter Solstice Spring Equinox Spring Equinox Fall Equinox Fall Equinox Seasons 24 EARTH'S

Fall Equinox Spring Equinox Winter Solstice

Extra Doodle Page

Geologic Time Chapter: 3 Section: 5 Pages: 80-85

EARTH TIME SCALE

 For the Earth Time Scale, you will need 5 meters of adding machine tape. Draw a continuous line down the middle of the tape. Draw a line across the left end of the tape. Label this line: The Present. From The Present line, draw five more lines exactly one meter apart. Label these lines 1 billion years ago, 2 billion years ago, etc. Plot each Event and Years Ago from the following list onto the tape. (Example: The first event would be placed 60 cm past 4 billion years ago.) Draw in pictures (10 minimum) to illustrate the major events. Lightly shade each of the four major Eras a different color. Label each of the four Eras. 			
Event	Years ago	Placement	
Earth's beginning???? Oldest microfossils Oxygen created End of Precambrian Era	4.6 billion 3.5 billion 2.5 billion 600 million	60 cm past 4 billion 50 cm past 3 billion 50 cm past 2 billion 60 cm from present	
Beginning of Paleozoic Era Trilobites abundant Fish abundant First forest fossils Continents collide forming Pangaea Appalachian Mts. form Trilobites die out	600 Million 570 million 500 million 390 million 280 million 280 million 230 million	60 cm from present 57 cm from present 50 cm from present 39 cm from present 28 cm from present 28 cm from present 23 cm from present	
Beginning of Mesozoic Era Pangaea breaks up forming Gondwanaland & Laurasia Rocky Mts. form Dinosaurs abundant Ancient birds found Gondwanaland separates into Africa & So. America Asteroid collision???? Dinosaurs die out	225 million 220 million 220 million 190 million 180 million 160 million 135 million 66 million 66 million	 22.5 cm from present 22 cm from present 22 cm from present 19 cm from present 18 cm from present 16 cm from present 13.5 cm from present 6.6 cm from present 6.6 cm from present 	
Beginning of Cenozoic Era First abundant mammals & birds Camels found in North America Ice Age begins - super-large mammals Last Ice Age ends	66 million 60 million 20 million 2 million 10,000 years	 6.6 cm from present 6 cm from present 2 cm from present 2 mm from present 0.01 mm from present 	

Extra Hints:

Be Neat! Use a ruler (SI Please)! Tape the ends of your timeline down. Use a variety of resources for your pictures. (Folder, Board, etc.)

Determining the Age of Rocks (and Fossils) Chapter:3 Section: 2-3 Pages: 64-65 and 70-73			
2 Met	thods:		
Relative Dating: Any of determining whether an or is or than other objects or events.	Anyof measuring the of an event or object in 		
These methods help geologis	ts determine the age of rocks!		
<u>Rock:</u> Naturally occurring solid organic matter.	of one of moreor		
Rock Cycle: Series of in which one type to another, is processes. Ways in which rocks change: (Processes) 1. 3. 5.	 :h a rock, from, and forms by geological 2. 4. 6. 		
Rock Cycle State State	Chapter:2 Section: 1 Pages: 28–32		
Complete the missing information.	0		

Sho-Wat-Cha-Kno

The Rock Cycle:

1. Sediments are transported or moved from their original source by a process called

- a. deposition.
- b. erosion.
- c. uplift.
- d. weathering.

2. Name four processes that change rock **<u>inside</u>** the Earth.

3.Name four processes that shape Earth's <u>surface</u>.

4. Give an example of how texture can provide clues as to how and where a rock formed.

5.Explain how rock is continually recycled in the rock cycle.

Relative Dating: Which Came First?

7. List two events and two features that can disturb rock-layer sequences.

8. Explain how physical features are used to determine relative ages.

Absolute Dating: A Measure of Time

- 9. Rubidium-87 has a half-life of
- a. 5,730 years.
- b. 4.5 billion years.
- c. 49 billion years.
- d. 1.3 billion years.
- 10. Explain how radioactive decay occurs.

11. How does radioactive decay relate to radiometric dating?

Inside the Earth		
Chapter: 4 Section: 1 Pages: 96–99		
<u>Crust:</u> •	<u>2 Ty</u>	pes:
•	•	
•		
<u>Mantle:</u> •	<u>3 Ma</u> 1. Lit	<u>ain Layers:</u> hosphere—
•	2. Ast	thenosphere—
	3. Me	esosphere—
Core	Oute	er Core:
•		
•		
Inner Core:		
•		
		Exosphere Thermosphere Stavbosphere Troposphere
Layers by Composition:	Layers by Physical Properties:	Crust Upper Mantle
•	· · ·	Mantle Outer Core
		Inner Core To scale
Earth's Layers Foldable	38	

SHO-WAT-CHA-KNO

Inside the Earth

For each pair of terms, explain how the meanings of the terms <u>differ.</u> 1. crust and mantle

2. lithosphere and asthenosphere

3. The part of the Earth that is molten is the

a. crust. c. outer core.

b. mantle. d. inner core.

4. Identify the layers of the Earth by their chemical composition.

5. Identify the layers of the Earth by their physical properties.

6. Explain the difference between the crust and the lithosphere.

Lithospheric Plates

Directions:

- 1. Label the 7 major plates.
- 2. Color the 7 major plates.

- 3. Label the 8 minor plates.
- 4. On what plate is most of the USA?
- 5. What part of the USA is NOT on that plate? On what plate is it?
- 6. What plate matches almost perfectly with the Ring of Fire, where most of the world's earthquakes and volcanoes occur?
- 7. Which plates touch the Mid-Ocean Ridge that runs north and south and is found in the Atlantic Ocean?
- 8. Which plate is the largest
- 9. Which plate is the smallest?
- 10. Which layer of the Earth makes up the plates?
- 11. Which layer of the Earth do the plates float on?

- 3. clues that support continental drift
- 4. mountains similar to those in Greenland and western Europe
 - 5. Wegener's name for one large landmass
 - 6. slow movement of continents
 - 7. evidence that Africa was once cold

- b. Appalachians
- c. continental drift
- d. glacial deposits
- e. Glossopteris
- f. Mesosaurus
- g. fossil, climate, and rock

SHO-WAT-CHA-KNO Sea Floor Spreading

Directions: Find the mistakes in the statements below. Rewrite each statement correctly on the lines provided.

- During the 1940s and 1950s, scientists began using radar on moving ships to map large areas of the ocean floor in detail.
- 2. The youngest rocks are found far from the mid-ocean ridges.

3. The scientist Henry Hess invented echo-sounding devices for mapping the ocean floor.

4. As the seafloor spreads apart, hot saltwater moves upward and flows from the cracks.

- As the new seafloor moves away from the ridge and becomes hotter, it moves upward and forms still higher ridges.
- 6. The research ship Glomar Challenger was equipped with a drilling rig that records magnetic data.

7. Rocks on the seafloor are much older than many continental rocks.

- 8. When plates collide, the denser plate will ride over the less-dense plate.
- 9. Earth's magnetic field has always run from the north pole to the south pole.
- The magnetic alignment in rocks on the ocean floor always runs from the north pole to the south pole.

Theory of Plate Tectonics—Wilson Chapter: 4 Section: 3 Pages: 108-111				
 Plate Tectonics = + + Subduction Subduction is the process by which the old ocean floor is It is the process for Sea Floor Spreading. The place where two tectonic plates is called a plate The type of depends on how the tectonic plate is The type of relative to the one beside it. may occur at all types of plate boundaries. Tectonic plate movement is measured in per year. 				
	P	Plate Bour	ndaries	
Туре	Description of Boundary	Direction of Movement	Sketch of Boundary	Examples
Divergent				
Transform				
Convergent Ocean-Ocean				
Convergent Ocean-Continental				
Convergent Continental- Continental			€ _{Ridge} Push. At m	id-ocean ridges, the
3 Possible Causes of Plate Motion:				
 Ridge Push—Occurs at a, the oceanic lithosphere is and slides downhill due to Convection—Hot rock, cool rock, cool rock address from the MOR. Slab Pull—Oceanic lithosphere is, it sinks and the rest of the plate with it. 				

Giant Plates

Earth's crust is made up of many huge pieces like a gigantic jigsaw puzzle. Each piece is a giant plate. Continents and oceans rest on these plates, which are always on the move. They are constantly being pulled apart or pushed together, or they are colliding with each other. Fit together the puzzle pieces that belong. There are eleven pairs of matching terms and descriptions in the puzzle pieces below. For each number (1–22), list the matching puzzle piece.

