The Periodic Table of Elements

CYOPT- Create Your Own Periodic Table...

...as well as labeling and taking notes on each group of elements

1	Periodic Table												0 Z					
·	1.00794	IIA	. 1						-			-	III A	IVA	VA	MA	MLA	4.0026
2	∋ Li 6941	4 Be 9.01218		0	t t	he	E	le	m	en	ts		5 B 10.811	б С 12011	7 N 14.0087	8 0	9 F 18 9984	10 Ne 20.1797
3	11 Na 22.9999	12 Mg 24.005	шв	IVB	vв	мв	мів		— MII -		• IB	1B	13 Al 27.98	14 Si 28.096	15 P 30.974	16 S 02.086	17 CI 35,453	18 Ar 09.948
4	19 K	^{zo} Ca	Z1 Sc	ZZ Ti	23 V	Z4 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	Э1 Ga	³² Ge	39 As	Э4 Se	≫s Br	≫ Kr
5	37 Rb	38 Sr	39 Y	4⊡ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	45 Pd	47 Ag	^{4⊜} Cd	49 In	डा Sn	51 Sb	₅z Te	ອ I	54 Xe
6	ss Cs	ss Ba	57 • La	72 Hf	7Э Та	74 W	75 Re	76 0 5	77 Ir	78 Pt	79 Au	eo Hg	81 TI	82 Pb	83 Bi	84 Po	≋5 At	≋б R⊓
7	87 Fr	®® Ra	89 + Ac	104 Rf	10s Ha	106 106	107 107	108 108	109 109	110 110					-			

• Lanthanide	58	59	®0	€1	62	ං	^{€4}	ee	ee	हर	68	es	70	71
Senes	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
 Actinide Series 	90	91	92	93	94	≫	s∈	97	⁹⁸	99	100	101	102	1009
	Th	Pa	U	Np	Рц	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

 Begin filling in the atomic symbol, atomic mass, and atomic number for the elements in group 1 & 2—<u>be</u> <u>sure to use the same order as the key</u>!

CYOPT- Structure of the Atom

Valence Electron Negatively Charged Outside the Nucleus; in the outside shell

Electron Negatively Charged Outside the Nucleus

Proton Positively Charged Inside the Nucleus **Neutron** Neutrally Charged Inside the Nucleus <u>Charge of atom:</u> Neutral

<u>Charge of nucleus</u>: Positive

Majority of the atom is empty space.

- Atomic Mass = # of protons + # of neutrons
- Atomic Number = # of protons
- Organized by increasing atomic number
- Valence Electrons

 [Sketch Table]
- An element's properties can be predicted from its location in the periodic table
- <u>Group/Family</u> = column (up/down)
 - # of valence electrons
- <u>Period</u> = row (left to right)
 # of orbitals/shells

CYOPT-Reading the Periodic Table

Group	# Valence Electrons
1	1
2	2
13	3
14	4
15	5
16	6
17	7
18	8

Metals

- 75% of elements are metals
- Physical properties of metals:
 - 1. hardness
 - 2. luster (shininess)
 - 3. malleability (can be pounded or rolled into shapes or flat sheets)
 - 4. ductility (can be pulled out or drawn into wires)

- 5. Conductors (transmit heat and electricity easily)
- 6. Magnetic (attracted to magnets)
 - ex. iron (Fe), cobalt (Co), and nickel (Ni)
- 7. State of Matter- Most metals are <u>solids</u> at room temperature
- 8. Melting point- high temperature; except Mercury (Hg)--liquid at room temperature

Group 1: Alkali Metals

Group 1: Alkali Metals

- Group 1
- 1 valence electron
 - which it readily loses to become a cation
- Extremely reactive NEVER found alone in nature
- Only found in compounds, combined with other elements
- Reacts violently with water to produce explosions

- Causes skin burns if you come into contact with it
- <u>Physical Properties</u>:
 - Soft- can be cut with a plastic knife
 - Shiny
 - Lightweight
 - Good conductors of electricity and heat
 - Low melting points
 - Tarnishes rapidly
- <u>Alkali Metals Video</u> (1.30)

Group 2: Alkaline Earth Metals

Group 2: Alkaline Earth Metals

- Group 2
- 2 valence electrons
- 2nd most reactive group of elements in the periodic table
- Chemically bond very easily by giving away 2 electrons

- Fairly hard
- bright white
- good conductors of electricity

38

- high melting points
- high densities
- Called Alkaline? When mixed in solutions = pH greater than 7
 - Those pH levels are defined as 'basic' or 'alkaline' solutions
 - Alkali and Alkaline Metals Video
- Brainiac Alkaline Metals Video

Groups 3-12: Transition Metals

Groups 3-12: Transition Metals

- Groups 3-12
- Largest group of elements
- Most commonly found
- Follows NO rules when finding valence electrons
- Use the two outermost shells/orbitals to bond with other elements
 - Most elements only use the valence shell

- Physical Properties:
 - Hard and shiny
 - Good conductors of heat & electricity
 - Are fairly stable, reacting slowly or not at all with air and water
 - Most have very high melting and boiling points
 - Most dissolve in acids
- <u>Gold Malleability Video</u>
- <u>Copper + Zinc = Brass Video</u>
- Iron in a Dollar Video

Rare Earth Metals

Rare Earth Metals: Lanthanides

- Top row (Rare Earth Metals)
- Fits in period 6
- Named after the first element in the row (Lanthanum)
- Physical Properties:
 - Soft
 - Malleable
 - Shiny/high luster
 - High conductivity
- Found naturally on Earth
- Only 1 element in the series is radioactive

Rare Earth Metals: Actinides

- Bottom row (Rare Earth Metals)
- Fits in period 7
- Named after the first element in the row (Actinium)
- All are radioactive
 - Nucleus is very unstable
 - last for only a fraction of a second after they are made

- Some not found in nature
 - Only thorium and uranium exist on Earth in significant amounts

Plutonium

All the elements after uranium were created artificially in the lab

Other Metals (Metals in Mixed Groups)

Other Metals (Metals in Mixed Groups)

- Located in groups 13, 14, 15
- Includes 7 Elements Al, Ga, In, Sn, Tl, Pb, Bi
- Follow "rules" when finding valence electrons
- Possess many of the same Physical Properties as the Transition Metals:
 - Solid & Opaque
 - Ductile & Malleable
 - High densities

Thallium

Metalloids

Metalloids

Possess properties of both metals and non-metals

- Semi-conductors
- Found along the "stair-step" or "ladder" (between metals/non-metals)
- Physical Properties:
 - Solids
 - Shiny or dull
 - Will conduct heat and electricity (but not as well as metals)

Metalloids:

- Boron
- Silicon
- Germanium
- Arsenic
- Antimony
- Tellurium
- Polonium

13	14	15	16	17
В	С	N	0	F
Boron	Carbon	Nitrogen	Oxygen	Fluorine
AI	Si	Р	S	CI
Aluminium	Silicon	Phosphorus	Sulfur	Chlorine
Ga	Ge	As	Se	Br
Gallium	Germanium	Arsenic	Selenium	Bromine
In	Sn	Sb	Te	1
Indium	Tin	Antimony	Tellurium	lodine
TI	Pb	Bi	Po	At
Thallium	Lead	Bismuth	Polonium	Astatine

Non-Metals

Nonmetals

 17 nonmetals
 Found to the right of the "stair step" on the periodic table & Hydrogen

- Lack most of the properties of metals
- Physical Properties: (most)
 - Solid nonmetals are brittle (not malleable/ductile)
 - Poor conductors of heat & electricity
 - Dull
- <u>Chemical Properties</u>: (most)
 - Form compounds easily
 - EXCEPT Group 18 (Noble Gases)

Group 17: Halogens

Halogens-Group 17

- Group 17
- 7 valence electrons
 - 1 away from a full shell
 - Very close to being happy
- Combine with many different elements
 - Often bond with elements from Group One
 - "Very reactive! Only need 1 more electron to fulfill the "Octet Rule"
 - Never found alone in nature
 - All are poisonous non-metals

Group 18: Noble Gases

The "Noble" Gases

Noble Gases- Group 18

- Full valence shell
 - Hydrogen & Helium: full with 2 electrons
 - Others: full with 8 electrons
- Happiest elements of all!!
 - Will never combine with other elements (too stable)
- Colorless, tasteless, odorless gases
- When electricity passes through them, they glow different colors

